If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-160=x
We move all terms to the left:
x^2+8x-160-(x)=0
We add all the numbers together, and all the variables
x^2+7x-160=0
a = 1; b = 7; c = -160;
Δ = b2-4ac
Δ = 72-4·1·(-160)
Δ = 689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{689}}{2*1}=\frac{-7-\sqrt{689}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{689}}{2*1}=\frac{-7+\sqrt{689}}{2} $
| 1000=99d+10 | | 12/3x=180 | | -38=2c-99 | | 0.3n−0.5=−0.8(0.6+0.5n) | | 8+4kk=6 | | 2u+11=–1 | | x(2/3x)=180 | | 15b+18=40 | | b-14=-33 | | -5(-6x+1)=205 | | 5x2-45x-55=5x | | 0/75x=12 | | 4x+5(3x-3)=-91 | | 7a-14=3 | | 3-4(6+6x)=7+4x | | c=3.14(2)(6) | | a2–1=1 | | (7x^2+4x-3)=(x-1)(x+3) | | 13=2h+7 | | -1/3+x/4=-2 | | 43t-21t-23=54 | | r+`=-4 | | 4x+5(3x-3)=91 | | -4/3x-6/5=-1/2 | | (10-9y)+73=180 | | 10x-14=46 | | -13+x4=-2 | | . | | s^2-7s-14=2 | | (7x+-17)+(2x+8)=180 | | X-2(x+4)=2 | | . |